Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.422
Filtrar
1.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656412

RESUMO

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Assuntos
Amilose , Edição de Genes , Hordeum , Proteínas de Plantas , Sintase do Amido , Amilose/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edição de Genes/métodos , Sintase do Amido/genética , Sintase do Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , beta-Glucanas/metabolismo , Plantas Geneticamente Modificadas , Solubilidade
2.
Food Chem ; 451: 139350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663246

RESUMO

The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".

3.
Int J Biol Macromol ; : 131835, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663696

RESUMO

To enhance the flexibility of starch film adhesion on yarns, sizing lipids (saponified lipid or emulsified lipid) must be added during the sizing process. However, different types of sizing lipids may have diverse combinations with starch to impact enzyme desizing. Therefore, this study investigated the effects of saponified lipid and emulsified lipid commonly used in warp sizing on the hydrolysis of starch. Additionally, the desizing efficiency and chain structure of desizing residues were analyzed. Experimental results demonstrated that the existence of saponified lipid or emulsified lipid led to a reduction in the degree of hydrolysis (1.1 % and 2.6 %, respectively) compared to the original corn starch. Notably, saponified lipid exhibited a relatively strong negative impact. Furthermore, the desizing efficiency decreased after adding emulsified lipid (1.2 %) or saponified lipid (2.9 %). Starch-lipid V-type complexes and physical hindrance could inhibit the enzyme desizing, resulting in a larger wavelength of maximum absorbance for desizing residues, along with higher molecular weight, z-average radius of gyration, and an increased proportion of long chains. The presence of saponified lipid significantly negatively influenced desizing, possibly due to the smaller particle size and propensity for complex formation with starch.

4.
Int J Biol Macromol ; : 131830, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663698

RESUMO

Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.

5.
Int J Biol Macromol ; : 131844, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663708

RESUMO

Starch is a key element in fried potato crisps, however, the effect of starch granule size on oil absorption of the product have yet to be fully investigated. The study explored the impact of starch granule size on both the dough characteristics and oil absorption in potato crisps. The dough composed of small-sized potato granules showed more compact and uniform network system. Additionally, X-ray Microscope analysis showed that potato crisps prepared with small-sized potato granules had limited matrix expansion and fewer pores, cracks, and voids. The small-sized potato and small-sized wheat granule addition crisps displayed a significantly greater average cell thickness (52.05 and 53.44 µm) than other samples, while exhibiting notably lower average porosity (61.37 % and 60.28 %) compared to other samples. Results revealed that potato crisps with medium and small potato granules had 12.91 % and 21.92 % lower oil content than those containing large potato starch. Potato crisps with B-type wheat starch showed 16.36 % less oil absorption than those with A-type wheat starch. Small-sized starches significantly influence the dough structure and contribute to the reduction of oil absorption in fried products. The generated insights may provide monitoring indexes for cultivating potato varieties with low oil absorption.

6.
Int J Biol Macromol ; : 131777, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663710

RESUMO

In this study, a new carrier for loading piperine was prepared using pepper starch, and its interaction mechanism was investigated. The porous pepper starch-piperine complex (PPS-PIP) showed higher loading efficiency (76.15 %) compared to the porous corn starch-piperine complex (PCS-PIP (52.34 %)). This may be ascribed to the hemispherical shell structure of porous pepper starch (PPS) compared to the porous structure of porous corn starch (PCS) based on the SEM result. PPS-PIP had smaller particle size (10.53 µm), higher relative crystallinity (38.95 %), and better thermal stability (87.45 °C) than PCS-PIP (17.37 µm, 32.17 %, 74.35 °C). Fourier transform infrared spectroscopy (FTIR) results implied that piperine not only forms a complex with amylose but may also be physically present in porous starch. This was demonstrated by the short-range order and X-ray type. Molecular dynamics simulations confirmed that hydrogen bonding is the primary interaction between amylose and piperine. Besides the formation of the amylose-piperine complex, some of the piperine is also present in physical form.

7.
Food Chem X ; 22: 101347, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623503

RESUMO

Increased prevalence of diabetes prompts the development of foods with reduced starch digestibility. This study analyzed the impact of adding soluble dietary fiber (inulin-IN; polydextrose-PD) to baked gluten-starch matrices (7.5-13%) on microstructure formation and in vitro starch digestibility. IN and PD enhanced water-holding capacity, the hardness of baked matrices, and lowered water activity in the formulated matrices, potentially explaining the reduced starch gelatinization degree as IN or PD concentration increased. A maximum gelatinization decrease (26%) occurred in formulations with 13% IN. Micro-CT analysis showed a reduction in total and open porosity, which, along with the lower gelatinization degree, may account for the reduced in vitro starch digestibility. Samples with 13% IN exhibited a significantly lower rapidly available glucose fraction (8.56 g/100 g) and higher unavailable glucose fraction (87.76 g/100 g) compared to the control (34.85 g/100 g and 47.59 g/100 g, respectively). These findings suggest the potential for developing healthier, starch-rich baked foods with a reduced glycemic impact.

8.
Int J Biol Macromol ; 267(Pt 2): 131504, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604428

RESUMO

In this study, based on response surface optimization of ultrasound pre-treatment conditions for encapsulating lycopene, the corn starch-glycyrrhiza polysaccharide composite (US-CS-GP) was used to prepare a novel lycopene inclusion complex (US-CS-GP-Lyc). Ultrasound treatment (575 W, 25 kHz) at 35 °C for 25 min significantly enhanced the rheological and starch properties of US-CS-GP, facilitating the preparation of US-CS-GP-Lyc with an encapsulation efficiency of 76.12 ±â€¯1.76 %. In addition, the crystalline structure, thermal properties, and microstructure of the obtained lycopene inclusion complex were significantly improved and showed excellent antioxidant activity and storage stability. The US-CS-GP-Lyc exhibited a V-type crystal structure, enhanced lycopene loading capacity, and reduced crystalline regions due to increased amorphous regions, as well as superior thermal properties, including a lower maximum thermal decomposition rate and a higher maximum decomposition temperature. Furthermore, its smooth surface with dense pores provides enhanced space and protection for lycopene loading. Moreover, the US-CS-GP-Lyc displayed the highest DPPH scavenging rate (92.20 %) and enhanced stability under light and prolonged storage. These findings indicate that ultrasonic pretreatment can boost electrostatic forces and hydrogen bonding between corn starch and glycyrrhiza polysaccharide, enhance composite properties, and improve lycopene encapsulation, which may provide a scientific basis for the application of ultrasound technology in the refined processing of starch-polysaccharides composite products.

9.
Gels ; 10(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38667669

RESUMO

In this study, the effect of different starches from corn, potato and pea containing varying amylose/amylopectin ratios on the textural and rehydration properties of extruded peanut protein gel particles were investigated. Results showed that textural and rehydration properties of peanut protein extruded with corn starch, potato starch and amylopectin are slightly inferior to those of peanut protein with pea starch extrudates. The addition of pea starch led to an increase in the pore structure of the peanut protein extrudates and improved their water absorption index, simultaneously reducing the hardness and density. Pea starch, as a natural water-absorbing expansion material, helped peanut protein to form cross-linked gel polymers that bind more water molecules, in addition to further polymerization with peanut protein, which made the protein secondary structure became disordered. These changes directly affected the textural properties of the extrudates. In addition, the blended system of starches and peanut protein tended to form more elastic solids, which affected the expansion of the extrudates. These findings indicate that starch can effectively improve the poor expansion of proteins, making it suitable for use in the production of plant protein-based foods.

10.
Gels ; 10(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667696

RESUMO

Sedimentation is an important property of colloidal systems that should be considered when designing pharmaceutical formulations. In pharmaceutical applications, sedimentation is normally described using Stokes' law, which assumes laminar flow of fluid. In this work we studied swelling and hydration of spherical cross-linked amorphous starch microspheres in pure water, solutions of sodium chloride, and in pH-adjusted aqueous solutions. We demonstrated that Reynolds numbers obtained in these experiments correspond to the transition regime between the laminar flow and the turbulent flow and, hence, expressions based on the non-Stokes drag coefficient should be used for calculations of sedimentation velocity from known density or for assessment of density from observed sedimentation velocity. The density of starch microparticles hydrated in water was about 1050 kg/m3, while densities obtained from experiment with other liquids were dependent on the liquids' densities. The data indicate that the swelling of the cross-linked starch microparticles as characterized by their densities is not sensitive to pH and salt concentration in the studied range of these parameters.

11.
Metabolites ; 14(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668351

RESUMO

Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand-receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM.

12.
Metabolites ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38668364

RESUMO

This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1ß, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.

13.
Int J Biol Macromol ; 267(Pt 2): 131315, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569985

RESUMO

Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 µm to 18.45 µm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.

14.
Int J Biol Macromol ; : 131421, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38641505

RESUMO

Nowadays, few investigations on the process parameters of grafted starch synthesized using electron transfer atom transfer radical polymerization (ARGET ATRP) and its applications in warp sizing and paper-making are presented. Therefore, this study aimed to survey the appropriate process parameters of bromoisobutyryl esterified starch-g-poly(acrylic acid) (BBES-g-PAA) synthesized by the ARGET ATRP, and also aimed to provide a new biobased BBES-g-PAA adhesive. The appropriate synthesis process parameters were 1.2, 0.32, and 0.6 in the molar ratios of vitamin C, CuBr2, and pentamethyldivinyltriamine to BBES, respectively, at 40 °C for 5 h. The BBES-g-PAA samples with a grafting ratio range of 4.63-14.14 % exhibited bonding forces of 57.8-64.6 N to wool fibers [55.5 N (BBES) and 53.8 N (ATS)], and their films showed breaking elongations of 3.29-3.80 % [2.74 % (BBES) and 2.49 % (ATS)] and tensile strengths of 29.1-25.4 MPa [30.4 MPa (BBES) and 34.7 MPa (ATS)]. Compared with BBES, significantly increased bonding forces and film elongations, and decreased film strengths for the BBES-g-PAA samples with grafting ratios ≥10.54 % were displayed (p < 0.05). The time (100-42 s) taken for the BBES-g-PAA films was significantly shorter than that of ATS (246 s) and BBES (196 s) films (p < 0.05), corresponding to better desizability.

15.
Proteins ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641972

RESUMO

Glycoside hydrolase (GH) family 13 is among the main families of enzymes acting on starch; recently, subfamily 47 of GH13 (GH13_47) has been established. The crystal structure and function of a GH13_47 enzyme from Bacteroides ovatus has only been reported to date. This enzyme has α-amylase activity, while the GH13_47 enzymes comprise approximately 800-900 amino acid residues which are almost double those of typical α-amylases. It is important to know how different the GH13_47 enzymes are from other α-amylases. Rhodothermus marinus JCM9785, a thermophilic bacterium, possesses a gene for the GH13_47 enzyme, which is designated here as RmGH13_47A. Its structure has been predicted to be composed of seven domains: N1, N2, N3, A, B, C, and D. We constructed a plasmid encoding Gly266-Glu886, which contains the N3, A, B, and C domains and expressed the protein in Escherichia coli. The enzyme hydrolyzed starch and pullulan by a neopullulanase-type action. Additionally, the enzyme acted on maltotetraose, and saccharides with α-1,6-glucosidic linkages were observed in the products. Following the replacement of the catalytic residue Asp563 with Ala, the crystal structure of the variant D563A in complex with the enzymatic products from maltotetraose was determined; as a result, electron density for an α-1,6-branched pentasaccharide was observed in the catalytic pocket, and Ile762 and Asp763 interacted with the branched chain of the pentasaccharide. These findings suggest that RmGH13_47A is an α-amylase that prefers α-1,6-branched parts of starch to produce oligosaccharides.

16.
Food Chem ; 450: 139412, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643646

RESUMO

Dodecenylsuccinic anhydride (DDSA) has been widely used to obtain amphiphilic starches. In this study, we investigated the functionalities of synchronous intermissive multi-ultrasound-assisted esterified starch. Compared to native starch (NS), it was deduced that multi-ultrasound-modified starch (US), esterified starch (ES), and multi-ultrasound-assisted esterified starch (UES) exhibited increased viscosities but reduced gelatinization temperatures and thermal stabilities. The viscoelastic moduli, retrogradation behaviors and hydrophobicity of the ES and UES species significantly altered. Moreover, the results of structural characterization suggested that esterification reduced the molecular weight and structural order of starch, whereas the intermissive ultrasonication treatment did not aggravate the structural disruption of ES. Additionally, compared with NS and US, the emulsification abilities of the ES and UES specimens were improved, leading to the desirable effect of stabilizing astaxanthin. Overall, this study provides a method for preparing amphiphilic starch, which can be exploited as a potential emulsifier and emulsion stabilizer for bioactive compounds.

17.
Int J Biol Macromol ; : 131681, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643913

RESUMO

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.

18.
Food Chem ; 448: 139102, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593566

RESUMO

Sorghum is a potential prebiotic ascribed to the high native resistant starch (RS) content. Our previous studies on raw sorghum have revealed prominent amino acid fermentation despite the high RS content. Interestingly, autoclaved-freeze-dried sorghum fed rats exhibited beneficial microbial and biochemical profiles. Having a keen interest to reciprocally scrutinize the underlying mechanisms behind these contrasting outcomes, we used an in vitro porcine batch fermentation model. The fermentable substrates in raw and autoclaved-freeze-dried (three cycles) sorghum (AC) after in vitro gastrointestinal digestion fostered similar bacterial community structures, yet with significant differences in the characteristic amylolytic microbial taxa abundance and their temporal variation. Further, significant differences in the concentration of organic acids in raw and AC manifested the differences in the predicted abundance of the underlying pathways of carbohydrate and organic acid metabolism. Thus, this study highlights the propensity of the heat-moisture treatment of sorghum in modifying the fermentability of its RS.

19.
Int J Biol Macromol ; 267(Pt 1): 131177, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583842

RESUMO

Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.

20.
Int J Biol Macromol ; 267(Pt 1): 131523, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608987

RESUMO

Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 µm and quinoa starches from 5.18 to 5.72 µm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA